
Perl 6 Pride and Envy

Czech Perl Workshop 2014

2014-05-20

Carl Mäsak

Perl 6 can be thought of as a

re-mix of Perl 5:

Keeping what works

Improving what doesn’t

Re-imagining Perl with hindsight

Basically,

It’s a community project,

a work of love and appreciation

Basically,

It’s fanfiction

We love canon so much that we are

writing our own fan work based on it

A fan work can be awesome

It can also be crap

Most of the time,

it’s a mixture of both

(Perl 6 is awesome)

(just kidding — it’s crap)

(just kidding — it’s a mixture of both)

In the cases where it’s awesome,

we feel a sense of Pride

and want to tell the world

how it improves on Perl 5

In the cases where it’s crap,

we feel a sense of Envy

and want to grow up to

be more like Perl 5

hi

I’m masak

Pride

Sigils that vary with use in Perl were an

interesting linguistic experiment.

But the results are back: the confusion

isn’t worth the benefits.

So Perl 6 makes sigils invariant:

invariant sigils

my %hash; $hash{foo}; @hash{qw<foo bar>};

my %hash; %hash<foo>; %hash<foo bar>;

Perl 6 is more “math-y”

Some have claimed that Perl 6 is full of

math, like, all academic and stuff.

It is. I’m proud of that.

my $sum = [+] @values;

sub postfix:<!>($n) { [*] 2..$n }
say 5!;

my $dot_product = [+] @v_1 »*« @v_2;

Perl 6 is more “math-y”

We should treat more things like values

and functions. Values parallelize well.

Functions compose and refactor nicely.

functional programming

Where Perl 5 likes to throw itself into a

for loop to do things, Perl 6 tends to

treat the whole collection of things.

Think map and grep, but with lots more

functions like that.

Perl 6 likes to pass functions to things.

smartmatching

Smartmatch is an awesome feature in

Perl 6. Perl 5 stole it back early on.

It was never so awesome in Perl 5.

Useful yes, but kinda awkward. People

called it “psychotic-match”.

Why? The type system isn’t there.

letter frequency

Task: collect all the letters in a text

and print their frequencies.

Perl 5 solution:
while (<>) { $count{lc chop}++ while length }
say "$_ => ", $count{$_}//0 for 'a' .. 'z';

letter frequency

Let’s start by translating the script

to Perl 6:

my %count is default(0);
for lines() { %count{$_}++ for .comb }
say "$_ => %count{$_}" for 'a' .. 'z';

letter frequency

We don’t need a for loop,

we have hypers:

my %count is default(0);
%count{$_}++ for lines».comb;
say "$_ => %count{$_}" for 'a' .. 'z';

letter frequency

But why store non-letters and then

not count them?

my %count is default(0);
%count{$_}++ for lines».comb.grep('a'..'z');
say "$_ => %count{$_}" for %count.keys;

letter frequency

But why store non-letters and then

not count them?

my %count is default(0);
%count{$_}++ for lines».comb.grep('a'..'z');
.say for %count.pairs;

letter frequency

Finally, the whole notion of looping

and counting things is a bit antiquated

when we have the Bag type:

I would consider this to be an example

of Concatenative Programming.

Everything is strung together.

.say for lines».comb.grep('a'..'z').Bag.pairs.sort;

lazy lists

The default in Perl 6 tends to be lazy:

elements in a sequence get computed

on-demand as you require them.

The usual list functions participate in

this game, and it turns into a laid-back

programming style, where you stop

caring if you’re generating “too much”.

object orientation

In Perl 5, the object-oriented parts

were artfully woven into the existing

design after the fact.

In Perl 6, they were integrated fully into

the language, and they underpin

everything in a very real sense.

object orientation

Here’s a typical class:

class Pair is Enum {
 has $.key;
 has $.value;
}

sub infix:«=>»($key, Mu $value) {
 Pair.new(:$key, :$value);
}

grammars

Perl 5 is already good at manipulating

strings and doing things with regexes.

Its toolset is hard to beat.

Perl 6 beats it by elevating string

parsing to language parsing. Every

parse results in a parse tree. You can

build grammars, and act on them.

grammars

Here’s a typical grammar:

grammar HashLang {
 rule TOP { '{' [<pair> [',' <pair>]* ','?]? '}' }

 rule pair { <term> '=>' <term> }
 token term { ... }
}

grammars

Parsing separators is so common that

we have the syntax % and %% for it.

% wants a separator between things.

%% additionally allows a trailing one.

grammar HashLang {
 rule TOP { '{' <pair>* %% ',' '}' }

 rule pair { <term> '=>' <term> }
 token term { ... }
}

grammars

Another thing that’s common is parsing

start and end tokens. ~ does that.

grammar HashLang {
 rule TOP { '{' ~ '}' <pair>* %% ',' }

 rule pair { <term> '=>' <term> }
 token term { ... }
}

new methods

I find these hard to live without

nowadays.

.pick($n) Like $n things out of a hat

.roll($n) Like $n dice

.uniq Keep non-repeating elems

.min/.max Get extreme values

.classify Collect into bins

.first Find first matching value

last Friday of each month

Task: print the last Friday of each

month of a given year. Perl 5:

use strict;
use DateTime;
use feature qw(say);

for my $month (1..12) {
 my $dt = DateTime->last_day_of_month(year => $ARGV[0],
 month => $month) ;
 while ($dt->day_of_week != 5) {
 $dt->subtract(days => 1) ;
 }
 say $dt->ymd ;
}

last Friday of each month

Perl 6 doesn’t have last_day_of_month.

So we need to emulate it:

for 1..12 -> $month {
 my $d = Date.new(@*ARGS[0], $month, 1)
 .delta(1, month).delta(-1, day);
 while $d.day-of-week != 5 { $d.=delta(-1, days) }
 say $d;
}

last Friday of each month

Something else? Yes, @*ARGS[0]
doesn’t look so sixish:

sub MAIN(Int $year = Date.today.year) {
 for 1..12 -> $month {
 my $d = Date.new($year, $month, 1)
 .delta(1, month).delta(-1, day);
 while $d.day-of-week != 5 { $d.=delta(-1, days) }
 say $d;
 }
}

last Friday of each month

Myself, I would approach this tool not

with for loops but with lists of things:

sub MAIN(Int $year = Date.today.year) {
 my @year-days = Date.new("$year-01-01") ..
 Date.new("$year-12-31");
 my @months = @year-days.classify: *.month;
 my @month-last-fridays = (.value.reverse.first: *.day-of-
week == 5 for @months);
 .say for @month-last-fridays;
}

last Friday of each month

But why are we messing with variables

when we chain everything?

sub MAIN(Int $year = Date.today.year) {
 say ~.value.reverse.first: *.day-of-week == 5
 for classify *.month,
 Date.new("$year-01-01") .. Date.new("$year-12-31");
}

last Friday of each month

Or we could write that in the forwards

direction, with the help of feeds:

sub MAIN(Int $year = Date.today.year) {
 .say
 for Date.new("$year-01-01") .. Date.new("$year-12-31")
 ==> classify *.month
 ==> map *.value.reverse.first: *.day-of-week == 5
}

interactive shell

When you write perl, it just sits there:

When you write perl6 (or python, or

irb), you get an interactive shell:

$ perl
^C

$ perl6
> say "OH HAI"
OH HAI
>

debugger

In the same vein, you can write perl6-
debug and get an interactive debugger.

(It’s a module, but it’s included in

Rakudo Star.)

Cool fact: it was a stealth project, made

by extending Rakudo, not changing it.

concurrency

The ideas behind concurrency in Perl 6

are finally coming together this year.

Lazy lists are for repeatedly getting

something. Supply objects are for

repeatedly being given something.

They unify async and events.

refactorability

There’s something about Perl 6 that

makes it very nice to refactor programs

in small incremental steps.

Perl 5 has that too, but not to the same

extent. Somehow the features of Perl 6

conspire to make refactoring an extra

pleasant experience.

Envy

performance

Still not fast. Working on it, though.

Moar has been a godsend, and useful

work is going on with optimization.

It’s reasonable to expect Perl 6 to be

not much slower (and sometimes

faster) than Perl 5... eventually.

third-party modules

For basically any problem you want to

solve, Perl 5 has a module for that.

Perl 6 module count has... three digits.

We have some ways to go.

It’s a bootstrapping thing. Popularity

breeds modules, and vice versa.

nytprof

Devel::NYTProf is just so amazing.

Perl 6 doesn’t have anything like that.

Someone needs to write it.

devel-cover

We don’t have a Devel::Cover either.

In fact, we’re missing many of those

tools that reach into the backend and

instrument it... except for a debugger.

perl critic

Perl 5 has excellent Perl::Critic

capabilities, thanks largely to PPI.

Perl 6... has excellent potential here,

but still no real way for Perl 6 user code

to parse Perl 6 code into an AST and do

stuff with it. Hopefully macros will help.

some of the event-y things

When I look at the AnyEvent, POE, and

Coro family of modules on CPAN, I also

grow a little bit jealous.

We should have something like that. In

fact, Perl 6 is still missing a unified

event handling story. But we’re inching

closer with the work on concurrency.

CPAN/PAUSE

The whole Perl 5 module infrastructure,

with uploading and testing and

smoking and reviews... is impressive.

Perl 6 is still mostly on Github.

We want CPAN and PAUSE. Work is

going on in that area.

Conclusion

Everything that’s worth doing

is worth doing well

Perl 5 and Perl 6 are different

Both have strong points

and weak

Perl 5 gets the ecosystem right

Perl 6 is a syntax/semantics upgrade

Both should be proud of their strengths

and envious about the other’s strengths

Perl 5 and Perl 6 will probably

never converge fully back into one

single language

Neither do I think one of them will

ever “win” or obviate the other

But we can certainly remain one

community, and keep stealing from

and inspiring each other

Thank you.

