Prescience and time travel

[1pueeTt. Greetings.

Nervous

Advice from a friend

Be careful

jnthn:

"Don't wear a towel
on your head

from the airport
to the hotel. :-)"
-- jnthn

masalk

Became active in 2008

Writing apps, submitting bugs

Exploring the frontiers of Perl 6

Increasing application size

A bit about Perl 6

An experiment

A fairly controlled experiment

A "research project"?

A "skunkworks project™?

Early on the adopter curve

Early adopters

Sane defaults

Theory meeting practice

"In theory, there's no difference

between theory and practice.

"In theory, there's no difference

between theory and practice.
In practice, there is.”

"In theory, there's no difference

between theory and practice,
even 1n practice." -- Scott Aaronson

Yapsi

Yet Another Perl Six Implementation

program (language A)

v

compiler

v

program (language B)

v

parsing

processing

code gen

v

¢ text

parsing

¢ parse tree

processing

¢ syntax tree

code gen

¢ text

program

v

runtime

Tardis

Time-traveling debugger

Here's the problem:

program run

time

program run

time

Jump around in the program

Two models on time travel

|. Can't kill grandfather

2. Can kill grandfather

If you kill a grandfather

the future from that point is destroyed

Have to re-run from that point

Yapsi::Runtime

A

Tardis::Debugger

Sigmund

Static code analyzer

v

parsing

v

processing

¢\

static analysis

code gen

v

So many things blow up at runtime

Can be caught at CHECK time

my Int $a;

$a = 'OH HAI';

sub foo(Int $%$a) {

}

foo('OH HAI'");

sub foo(Int $%$a) {
$a = 42: # boom

}

foo(5) ;

sub foo() {

}

foo('OH HAI'");

my $a;

say %$a; # probably a mistake
$a = 42;

my $a = 42;

$a is never used

multi sub foo(Int %$a) {
multi sub foo(Int $b) {

foo(42) ; # boom

multi sub foo(Int $a?) {
multi sub foo(Str $a?) {

foo () ; # boom

multi sub foo(Int $a, Int $b) {
multi sub foo(Str $a, Str $b) {

foo(42, 'OH HAI'); # boom

my ($a, $b) =1, 2, 3;

the 3 1s lost!

our Int sub foo() {
return 'OH HAI';

}

Halting problem

say 'OH HAI';

for 1..1337 {
say 'OH HAI';

}

for 1..Inf {
say 'OH HAI';

}

The limits of analysis

Tell me whether it halts!

input

code

input

code

input

StuckFinder ™

code

v

StuckFinder™

0) €—(©) <

d
| Q
!

StuckFinder™

=) —» (9

paradox

same as '| am lying"

same as this statement is false"

"Scooping the Loop Snooper”

by Geoffrey K. Pullum

So, no StuckFinder™

Still, good analysis possible

Would help find errors early

Sigmund: finding errors ahead of time

Tardis: finding errors backwards in time

Tools are made of theory + practice

Let's build tools we really like

Cnacubo.

Ectb Bonpockl! Questions?

