
Dude,

where’s my

flying car?

masak

FOSDEM 2013-02-02

A whirlwind exposition
of the Perl 6 language: its
release status, some concrete
syntactic examples, a historical
overview, a real live demo, and
current status and roadmap.

masak

started programming at 10

learns a new language every year

enjoys cooking, writing music, and beer

I like Perl 6.

This talk is about why.

You may have heard these things about Perl 6...

When will Perl 6 be released?

Will it ever be finished?

Perl 6 is vapourware!

How about a production-ready Perl 6?

Perl 6 has “missed the boat”!

6.0.0?
You know, an official release.

Fun fact: we do make releases!

But that’s not what people mean when they say “released”.

Rakudo

2009 2010 2011 2012

Niecza

2009 2010 2011 2012

Perl 6 is partway done. Some things are ready for use.

First 80% Second 80% Third 80%

Big project

we are here

(In this talk and the next one, we’ll only talk about things
that are implemented already. You’ll see that it’s quite a lot.)

We’re riding the wave of the adoption curve, inviting
people as we go along:

we are here

The future is already here —
it's just not very evenly distributed. “ ”

William Gibson

A few small language examples

Loops

for @students { ... }
for @students -> $student { ... }

for @tastes Z @foods -> $taste, $food { ... }
for @tastes X @foods -> $taste, $food { ... }

while $continue { ... }
until $quit { ... }

repeat while $continue { ... }
repeat until $quit { ... }

loop { ... }
loop (;;) { ... }

combine together like a zipper

combine together
in all possible ways test condition

after
first iteration

C-style loop

Subroutines

sub foo { say “OH HAI” }
foo(); # OH HAI
foo; # OH HAI

sub bar($a, $b?) { say defined $b }
bar(1, 2); # True
bar(3); # False

sub baz($a, $b = 5) { say $b }
baz(1, 2); # 2
baz(3); # 5

sub greet($name, :$greeting = “Hello”) {
 say “$greeting $name”;
}
greet “jnthn”; # Hello jnthn
greet “kathy”, :greeting(“你好”); # 你好 kathy

Classes

class Point {
 has Real $.x;
 has Real $.y;

 method gist {
 “($.x, $.y)”
 }
}

my Point $p .=
 new(:x(3), :y(4));

say $p; # (3, 4)

class Rectangle {
 has Point $.topleft;
 has Point $.bottomright;

 method gist {
 “$.topleft - $.bottomright”
 }
}

class SmoothRectangle is Rectangle {
 method gist {
 callsame() ~ “ with web 2.0 corners”
 }
} (there are also roles,

which are great)

Grammars
grammar Text::CSV {
 rule TOP { ^ <line>* $ }

 rule line {
 ^^ <value>* % \, $$
 }
 rule value { <text> }
 rule text { \” <-[”]>* \” }
}

Text::CVS.parse($csv);
results in $/

grammar CustomCSV is Text::CSV {
 method value { <text> | <integer> }
 method integer { \d+ }
}

(oh, and you can mix
roles into grammars!)

number of lines
say +$/<line>;
say +$<line>;
say $<line>.elems;

third value of second line
say ~$<line>[1]<value>[2];

Subtypes and enums

subset EvenInt of Int where { $^n %% 2 };

say 5 ~~ EvenInt; # False
say 8 ~~ EvenInt; # True

sub foo(EvenInt $e) { ... }

enum Day <Sun Mon Tue Wed Thu Fri Sat>;
say +Fri; # 5
say ~Fri; # Fri
say Fri.kv; # Fri 5

say 3 ~~ Day; # True
say 9 ~~ Day; # False

Operator overloading

sub postfix:<!>($n) { [*] 1..$n }

say 5!;

① Build ranks and suits

② Build a deck of cards

③ Build a table of card points

④ Draw a random hand of five cards

⑤ Print the hand and its total point sum

With Perl 5

my @suits = qw< ♣ ♢ ♡ ♠ >;
my @ranks = (2..10, qw< J Q K A >);

① Build ranks and suits

concatenate each rank with each suit
my @deck;
for my $rank (@ranks) {
 for my $suit (@suits) {
 push @deck, "$rank$suit";
 }
}

② Build a deck of cards

my %points;
for my $rank (@ranks) {
 for my $suit (@suits) {
 my $score = $rank eq 'A' ? 11
 : $rank =~ /[JQK]/ ? 10
 : $rank;
 $points{"$rank$suit"} = $score;
 }
}

③ Build a table of card points

grab five cards from the deck
my @hand;
for (1..5) {
 my $card = $deck[rand @deck];
 redo if grep { $_ eq $card } @hand;
 push @hand, $card;
}

④ Draw a random hand of five cards

display my hand
say join ' ', @hand;

tell me how many points it's worth
my $sum;
for $card (@hand) {
 $sum += $points{$card};
}
say $sum;

⑤ Print the hand and its total point sum

With Perl 6

my @suits = < ♣ ♢ ♡ ♠ >;
my @ranks = 2..10, < J Q K A >;

① Build ranks and suits

no need for qw any more;
<> is now a list quoter

concatenate each rank with each suit
my @deck = @ranks X~ @suits;

② Build a deck of cards

the two for loops are gone; cross operator
joins together elements in all possible ways

my %points = @deck Z ((2..10, 10, 10, 10, 11) xx 4);

③ Build a table of card points

no for loop; zip operator combines two lists

grab five cards from the deck
my @hand = @deck.pick(5);

④ Draw a random hand of five cards

no for loop; built-in .pick method

display my hand
say @hand;

tell me how many points it's worth
say [+] %points{@hand};

⑤ Print the hand and its total point sum

no join; you get spaces for free

for loop folded into reduce operator

my @suits = < ♣ ♢ ♡ ♠ >;
my @ranks = 2..10, < J Q K A >;

concatenate each rank with each suit
my @deck = @ranks X~ @suits;

my %points = @deck Z ((2..10, 10, 10, 10, 11) xx 4);

grab five cards from the deck
my @hand = @deck.pick(5);

display my hand
say @hand;

tell me how many points it's worth
say [+] %points{@hand};

Overview of the history of Perl 6

Project
announced

RFC phase Specification phase

Pugs Rakudo Niecza

Implementation phase

Apocalypses
Synopses
Exigeses

today

Live demo!

(Given enough time.)

What's there today

Basic control structures,
blocks, file IO, regexes,
control flow, variables,
constants, functions, etc

Classes

Roles

Subset types

Enums

Mixins

Operators

Reduction ops

Hyper ops

Cross ops

Zip ops

Regexes

Grammars
Advanced signature matching

Lots of built-in types

Multi dispatch Packages

Modules

Phasers

Junctions

Introspection

Meta-
Object

Protocol

Pod documentation

What's we’re still working on

Native type stuff Performance

Some advanced
regex constructs

Macros

Perl 5 interop

Compile-time optimizations

Backend
portability

Slangs

Perl 6 is partway done.

Some things are ready for use.

Is it finished, polished, production-hardened?

No.

But it’s worth checking out.

Try it out!

