https://www.flickr.com/photos/hyshqa/4939751212/

W

B‘*E -
Hairy
Yaks

o L b= s -.1_‘ 1 _I.‘ !
oL E i +| L :: .};ﬁrh“m
LA "
Lt. w _1 11‘_

' &

Carl Masak
GPW 2016-03-10

Before we begin, a correction...

Argentina Brazil

/

A little bit of background...

Strangely Consistent

Musings about programming, Perl 6, and programming Perl 6

Home About Archive

2oct, 2014 Macros progress report: after a long break

by Carl Méasak
| am going to make no pretense at covering everything here. My goal with this post is simply to

no notes bring us largely up-to-date with the current ideas about macros in Perl 6 and possible
directions we're taking. A post about this has been sorely missing for a while now.

In order not to retread old ground, this post assumes that you have read day 23's post about
macros in the 2012 Perl 6 Advent calendar. That post remains a very good high-level summary

of all the work so far.

ﬂINFI'.'NQBUIIY GOT TIMEIFOR!

—

merm gg arator.net

SR THAT!

Freely borrowing features

007 looks like a mix of Perl, Python, and JavaScript.

feature

braces

user-defined operators
variable declarations
macros

implicit typecasts

sigils

multis

implicit returns

Perl 6

yes

yes

yes

yes

yes

yes

yes

yes

007

yes

yes

yes

yes

no

no

no

no

Python
no
no
no
no
no
no
no

no

(live demo)

Everything I've done leads up to this

masak / gge

<> Code Issues 0 Pull requests 0 Wiki Pulse Graphs

Glacial Grammar Engine -- a Perl 6 grammar engine written in Perl 6 — Edit

masak / yapsi

<» Code Issues 0 Pull requests 0 Pulse Graphs
A Perl 6 compiler-and-runtime written in Perl 6 — Edit

masak / ipso

<> Code Issues 0 Pull requests 0 Wiki

A metacircular Lisp in Perl 6 — Edit

& O

html

Secret sauce: the AST format

Elements Console Sources Network Timeline Profiles

Homoiconic? | think so...

lang="en" data-ember-extension="1

» <head>..</head

»..</a
¥ =div class="container

vyvyy

::before

h2 id="overview"=0verview=/h2

ootk s $ cat examples/hello-world.007
P>/ say("Hello, world!");

table class="table table-bordered">.</table
h2 id="values'"=Values<=/h2
p=A small number of values in 007 can be expressed using 1i

b <pre=.</pre
p=0nly double quotes are allowed. Strings don't have any fo
P <p>.</p
h2 id="expressions'=Expressions=</h2
&0 : CompUnit Q::Block {
> <pr parameterlist: Q::ParameterList [],
i statementlist: Q::StatementList [Q::Statement::Expr Q::Postfix::Call {
Mmllﬂﬁ identifier: Q::Identifier "postfix:<()>",

operand: Q::Identifier "say",

argumentlist: Q::ArgumentList [Q::Literal::Str "Hello, world!'"]

}H

Well-kept secret: this is easy

rule statement:if { method statement:if ($/) {
if <xblock> my %parameters = $<xblock>.ast;
[else %parameters<else> = $<else> :exists
[?? %<elser.ast
| <else=block> Il val::None.new;
| <else=statement:if>
] make Q::Statement::If.new(|%parameters);
]1¢? }

class Q::Statement::If does Q::Statement {
has $.expr;
has $.block;
has $.else = Val::None.new;

method attribute-order { <expr block else> }
method run($runtime) {

my %expr = %.expr.eval(%runtime);
if $expr.truthy {

Easy: index chains and assighment

9 gEEm tutorial/README.md

=

"==", and an array is never equal to an int, not even the length of the

array.

-The only thing that can be assigned to is variables. Arrays are
-immutable values, and you can't assign to "ar[3], for example.

- ar[3] = "hammer"; # error; can't touch this

+You can assign to individual variables, like "name’, or long strings
+of postfix operators, like “employee[n - 1].boss.name . There's no
+autovivification like in Perl — in the previous example,

+ employee[n - 1].boss needs to already exist (though its " .name’

+property doesn't need to exist).

Operands don't need to be simple values. Arbitrarily large expressions
can be built. Parentheses can be used to explicitly show evaluation

Some less easy things

D block) frame
() block - f
oc rame
T
C block _) frame
C block] frame
() block - f
ofe rame
T
D block) frame

static dynamic

Macros: easy

format.@e7

sub format(fmt, args) {
sub replaceAll(input, output, transform) {
my openBracePos = input.index("{");
if openBracePos == -1 {
return output ~ input;

}
my closeBracePos = input.suffix(openBracePos).index("}"};
if closeBracePos == -1 {
return output ~ input;
}

return replaceAll(
input.suffix{openBracePos + closeBracePos + 1),
output ~ input.prefix(openBracePos) ~ transform{input.substr{openBracePos + 1, closeBracePos - 1)),
transform);

mw

return replacedAll(fmt, , sub transform{arg) {
return args[int{arg)];

1)

say(format("{e}{1}{e}", ["abra", "cad"])); # abracadabra
say(format("foo{@}bar", ["{1}"1) }); # foo{l}bar (to demonstrate that {1} works in format arguments)

Compile-time error checking

~~ Q::Literal::Str && args ~~ Q::Term::Array {
highestUsedIndex = findHighestIndex(fmt.value);
argCount = args.elements.elems();

argCount <= highestUsedIndex {

die "Highest index was " ~ str(highestUsedIndex)

~ " but got only " ~ str(argCount) ~ " arguments.";

Closures

(live demo)

Hygiene

my $program = q:to/./;
macro foo(expr) {
my x = "oh noes";
return quasi {
say({{{expr}}});
}
}

Y X = Tyay”;
foo(x);

outputs $program, "yay\n", "macro arguments also carry their original environment”;

This is the case of a variable. Also true for subs, operators, macros...

Solution: identifiers with context

class Q::Identifier does Q::Term {
has Val::Str %.name;
has $.frame = Val::None.new;

method attribute-order { <name> }

method eval($runtime) {
return fruntime.get-var(
%.name.value,
$.frame ~~ Val::None ?? %$runtime.current-frame !! $.frame
);
}

method put-value($value, $runtime) {
$runtime.put-var(self, $value);

}

A variable knows the context in which it was created.

t/Teatures/custom-macro-ops.t

t/features/custom-ops.t my $program = q:to/./;
t/features/expr.t sub A(k, x1, x2, x3, x4, x5) {
t/features/for-loop.t if k <= 0 {
t/features/if-statement.t return xa() + x5();
t/features/macros.t } else {
t/features/objects.t sub B() {
t/features/q.t K = k
t/features/quasi.t

t/features/return.t
t/features/stringification.t
t/features/subs.t
t/features/syntax-elements.t
t/features/types.t
t/features/unhygienic-declarations.t
t/features/variables.t
t/features/while-loop.t
t/integration/corner-cases.t
t/integration/fibonacci.t
t/integration/man-or-boy.t
t/integration/meta-info.t
t/integration/val-q-classes.t
t/linter/sub-not-used.t
t/linter/variable-declaration-assignment.t
t/linter/variable-not-used.t outputs $program, "-67\n", 887 is a man-compiler”;
t/quarantine/integration-corner-cases-test-21.t ..

All tests successful.

Files=37, Tests=418, 106 wallclock secs (0.17 usr 0.

Result: PASS

_l;
return A(k, B, x1, x2, x3, x4);
}

return B();

}

sub x1() { return
sub x2() { return -
sub x3() { return -
sub x4() { return
sub x5() { return

L =
B e e]

say(A(l18, x1, x2, x3, x4, x5))

Tests | didn't expect

my @lines-ending-with-ws;
for find(".", /".pm"™ $/) -> $file {
for $file.I0.lines.kv -> $i, $line {
if $line ~~ /\h $/ {
push @lines-ending-with-ws,
"$file {$i + 1}: " =~
$line.subst(/\h* $/, -> $/ { chr(ex2628) x $/.chars });

is @lines-ending-with-ws.join("\n"), "", "no whitespace at the end of a line in .pm files";

my @classes = flat
gx[perlée -ne 'say ~$8 if [~class Zh+ ("Q::" \5+)/' 1lib/ @87/Q.pm].lines,
gx[perleé -ne 'say ~%@ if /~class \h+ ("Val::" \S5+)/' lib/_ee7/val.pm].lines;

my @builtins = gx!perlé -ne 'say ~$@ if /~ \h+ ([Val|Q] "::" <-[,]»+) "," \h* $/' lib/ @@7/Runtime/Builtins.pm!.lines;

my $missing-classes = (flbuiltins (-) @classes).keys.map{{ "- $ " }).join("\n");
is $missing-classes, "", "all built-in types are also classes";

my $missing-builtins = (@classes (-) @builtins).keys.map({ "- $_ " }).join("\n");
is $missing-builtins, "", "all classes are also built-in types";

Realization: raw AST vs cooked

Make the linter able to reason about macro usages

masak opened this issue on Oct 28, 2015 - 4 comments
—

....1" masak commented on Oct 28, 2015 Owner

= gl
1

This is a funny one. | had already coded up the linter code for "defined a sub, then didn't use it". | figured |
could just copy the same test code into a separate one for macros, and change things around a little, and
then implement it for macros.

But no. | can't do that. See, macro calls aren't there when the linter gets to the Qtree.

Future: syntax macros

Syntax macros

Syntax macros are defined at statement level and essentially introduce a new type of statement. Let
pretending keyword, a block form of temp :

class Q::Statement::Pretending is Q {
has Q::Expr $.expr;
has Q::Block $.block;

}

macro statement_control:<pretending>(Q::Expr $expr, Q::Block $block)
is parsed(rule { <sym> <EXPR> <pblock> }) {
...code to check that $expr is of the form ~{{{$var}}} = {{{$value}}} elided...
return quasi {

temp {{{$var}}} = {{{$value}}};
{{{%$block}}}; # handling of >@ params elided

Future: visitor macros

Visitor macros

It's possible we shouldn't call these "macros" at all. But | don't have a better name
NOw.

By way of example, let's say you want to write a macro that makes code such as

The visitor macro might look something like this:

MATCH (Q::If (
Q::Infix::NumEq :$expr (

Q::Enum :$rhs where *.value eq "Bool::True"))) {

die "useless use of == True ";

E

Every single bit of the above is conjectural syntax.

Thank youl!

Questions?

https://github.com/masak/007

Remember, pull requests
are love <3

https://wwiw.flickr.com/photos/brenda-starr/3727579805

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

