
How to
avoid

your
business

application
screwing up

masak

YAPC::EU 2011



airports



(hi, I'm masak)



Landside

Airport

Airside



Check in

Airport



Check in

Drop
Luggage

Airport



Check in

Drop
Luggage

Passport
control

Airport



Check in

Drop
Luggage

Passport
control

Boarding

Airport



post-hypnotic suggestion



it's ok

to have

more than one

model



traditionally



data



nouns



Passenger

Flight

Luggage



normalized



DDD



domain model



Passenger

Flight

Luggage

book
check in
security-clear
board

register
take off
land

reregister



focus on the verbs



aggregate



Flight

re

Arrays

Hashes

Objects

Scalars

tra
ns
ac
tio
n

bo
iu
nd
ar
y



bounded context



re

Passenger
tracking

Luggage
tracking



so, traditionally



Client

D
T
O

D
T
O

D
T
O

A
C

K
/N

A
K

Data Storage

Remote Facade

Application Services

Domain
Object

Domain
Object

Domain
Object



PassangerService

void PutPassengerInFirstClass(PassengerId) 
Passenger GetPassenger(PassengerId) 
ArrayRef[Passenger] GetPassengersWithName(Name) 
ArrayRef[Passenger] GetFirstClassPassengers() 
void ChangePassengerLocale(PassengerId, NewLocale) 
void RegisterPassenger(Name, SSN, FlightId) 
void EditPassengerDetails(PassengerDetails)



PassangerWriteService

void PutPassengerInFirstClass(PassengerId) 
void ChangePassengerLocale(PassengerId, NewLocale) 
void RegisterPassenger(Name, SSN, FlightId) 
void EditPassengerDetails(PassengerDetails)

PassangerReadService

Passenger GetPassenger(PassengerId) 
ArrayRef[Passenger] GetPassengersWithName(Name) 
ArrayRef[Passenger] GetFirstClassPassengers() 



Client

D
T
O

D
T
O

C
o
m
m
a
n
d A

C
K

/N
A

K

Data Storage

Remote Facade

Application Services

Domain
Object

Domain
Object

Domain
Object



the end



the end?



Client

D
T
O

D
T
O

C
o
m

m
a
n
d A

C
K

/N
A

K

Data Storage

Remote Facade

App Services

Domain
Object

Domain
Object

Remote Facade

Thin Read Layer



hm...



read-side/write-side



be normal



why?



re

Databases intended for
online transaction processing (OLTP)
are typically more normalized than

databases intended for
online analytical processing (OLAP).

- Wikipedia



reads are common



optimize for reads



Client

D
T
O

D
T
O

C
o
m

m
a
n
d A

C
K

/N
A

K

Data Storage

Remote Facade

App Services

Domain
Object

Domain
Object

Remote Facade

Thin Read Layer

Data Storage

EvenEvent



Passenger
booked

Passenger
Checked

In

Passenger
cleared
security

Passenger
boarded



sum = foldl (+) 0



state = foldl apply empty



customize your read-side



Client

D
T
O

D
T
O

C
o
m

m
a
n
d A

C
K

/N
A

K

Event Storage

Remote Facade

App Services

Domain
Object

Domain
Object

Remote Facade

Thin Read Layer

Data Storage

EvenEvent

H
a
n
d
le
rs



current state isn't always enough



need prediction FAIL



CommandHandler

can rebuild
an aggregate
from events

can call
methods on

an aggregate

Command

Aggregate

Data Storage

fetch store

basically
holds your
business

logic



Events table

Column name
AggregateId
Data
Version

Column type
Guid
Blob
Int



Aggregates table

Column name
AggregateId
Type
Version

Column type
Guid
Varchar
Int



re

Passenger
BC

Luggage
BC

Flight
BC

Check-in

Drop luggage

Passport control

Board plane



problem



consistency



saga



START

WAIT

WIN FAIL



testing



Given

When

Then

an aggregate in a certain state

an action performed on the aggregate

a number of consequences



Given

When

Then

a number of events

an action performed on the aggregate

a number of consequences



Given

When

Then

ArrayRef[Event]

an action performed on the aggregate

a number of consequences



Given

When

Then

ArrayRef[Event]

a command performed on the aggregate

a number of consequences



Given

When

Then

ArrayRef[Event]

Command

a number of consequences



Given

When

Then

ArrayRef[Event]

Command

a number of events



Given

When

Then

ArrayRef[Event]

Command

ArrayRef[Event]



Given

When

Then

ArrayRef[Event]

Command

ArrayRef[Event] | Exception



team independence



agile



outsourcing



summary



more than one model



aggregates



CQRS



read side/write side



event sourcing



thank you


