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post-hypnotic suggestion
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focus on the verbs
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PassangerService

void PutPassengerInFirstClass(PassengerId) 
Passenger GetPassenger(PassengerId) 
ArrayRef[Passenger] GetPassengersWithName(Name) 
ArrayRef[Passenger] GetFirstClassPassengers() 
void ChangePassengerLocale(PassengerId, NewLocale) 
void RegisterPassenger(Name, SSN, FlightId) 
void EditPassengerDetails(PassengerDetails)



PassangerWriteService

void PutPassengerInFirstClass(PassengerId) 
void ChangePassengerLocale(PassengerId, NewLocale) 
void RegisterPassenger(Name, SSN, FlightId) 
void EditPassengerDetails(PassengerDetails)

PassangerReadService

Passenger GetPassenger(PassengerId) 
ArrayRef[Passenger] GetPassengersWithName(Name) 
ArrayRef[Passenger] GetFirstClassPassengers() 
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the end



the end?
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hm...



read-side/write-side



be normal



why?



re

Databases intended for
online transaction processing (OLTP)
are typically more normalized than

databases intended for
online analytical processing (OLAP).

- Wikipedia



reads are common



optimize for reads
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sum = foldl (+) 0



state = foldl apply empty



customize your read-side
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current state isn't always enough



need prediction FAIL



CommandHandler

can rebuild
an aggregate
from events

can call
methods on

an aggregate

Command
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Data Storage
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Events table

Column name
AggregateId
Data
Version

Column type
Guid
Blob
Int



Aggregates table

Column name
AggregateId
Type
Version

Column type
Guid
Varchar
Int
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team independence



agile



outsourcing



summary



more than one model



aggregates



CQRS



read side/write side



event sourcing



thank you


