

May you live in
interesting times

Carl Mäsak

Granada, YAPC::EU 2015-09-03

Maybe you thought I was
going to talk about

macros.

Nope. Not today.

If you're starving for
macros, check out 007.

Turning points. Bootstrapping a user base.

What is production?

It means different things to
different people.

For some people it means
something like “usable for
work stuff”. For others, it

means “we are actually
using this for work stuff”.

For yet others it means
“very bad things happen if

this stops working”.

In this talk...

Production means...

...code I wrote...

...not for the Perl 6 tool
chain itself...

...to serve me (or my
employer) in some way...

...that actually gets run.

Thesis of this talk

Perl 6 is pretty cool, but all the features that
make it cool are individually pretty mundane.

They're mundane because they're well-tested,
and dependable. Things like types, lexical

scoping, and good APIs.

As a corollary, the cool features that have
traditionally been advertised as being the
awesomest, are pretty marginal in Perl 6.

Challenge of this talk
I just commit to focusing only on boring features,

didn't I?

Oh, shucks. ☺

…

As compensation, I promise to be very grumpy
and cynical, so I sound like I have some “wisdom”

and hard-earned “experience” to share.

Get off my lawn!

The today script

Let's start simple. This script
runs every time I open a new
terminal window or tab.

(But only once a day.)

It reminds me of important
dates, like birthdays and anniversaries.

Think of it like a modern-day digital almanac.

 wed 26
 thu 27
 fri 28 X's birthday
 sat 29 Y's birthday
 sun 30
 mon 31
 tue 1 hours to $boss
 wed 2

masak@siddharta ~ $

slurp and spurt

First off, I note that I use slurp and spurt a lot in
smaller scripts.

For Perl 5 users, CPAN provides, as usual:
File::Slurp has your back (with read_file and
write_file). But I'm glad these are built in.

my $LAST_RUN_FILE = "%*ENV<HOME>/.today-last-run";
exit
 if try slurp($LAST_RUN_FILE) eq $today;
spurt($LAST_RUN_FILE, ~$today);

qqw
I found I really liked qqw list quoting for hashes.

For when you want rich strings but don't want to
type any fat arrows and commas.

Perl has always been good at making this kind of
list convenient to write. Perl 6 even more so.

I think post-GLR there should be a flat there.

my %year-events = «
 "month 8, day 4" "Obama's birthday"
 "month 7, day 14" "Trump's birthday"
»;

Naming your lexicals
Just like most of you, I've agonized about what to

name my lexical variables. Perl 6 makes that
slightly easier in some cases.

I consider it a win every time I get to do this. It's
like the callee decides the name of my variable,

saving me the responsibility of choice.

my $today = Date.today;
for ^7 -> $days {
 my $date = $today.later(:$days);
 # ...
}

Cautious perl6
If you have something running at every terminal
startup, it turns out you need to cover the case

where your Rakudo is rebuilding.

I learn shell/bash on a strictly need-to-know basis.
In this case, the brief foray into the manpages

meant that I could de-clutter my life a bit.

#!/bin/sh
if test $RAKUDO/src/gen/m-main.nqp -nt $RAKUDO/install/bin/perl6
 then exit
fi

otherwise, invoke perl6

The month script

At the turn of every month, I send a work
summary to my boss.

I used to manually list all the days from the
previous month in a text file, but I got tired of

that. So I wrote this script which does it for me.

Each month, it saves me a minute or two of
tedious, repetitive, error-prone typing.

Output is always fiddly

I wanted the output to come out
like you see on the right. The rule is:

empty lines before and after a
weekend.

In code, this comes out as:

Note how a “before” viewpoint is
slightly forced upon us. Ergh.

Wednesday 1 July
Thursday 2 July
Friday 3 July

Saturday 4 July
Sunday 5 July

Monday 6 July
Tuesday 7 July
Wednesday 8 July
Thursday 9 July
Friday 10 July

Saturday 11 July
Sunday 12 July

...

say "" if $weekday eq "Monday" | "Saturday"
 && $_ !== $first;
say "$weekday $monthday $monthname";

Junctions

Hey, you probably noticed that junction flash by.

So what about not caring much for cool features?

Well, I don't. I use junctions as syntax, not as
values. I consider the other ways an anti-pattern.

YMMV.

say "" if $weekday eq "Monday" | "Saturday"
 && $_ !== $first;

The pinnacle of Perl 6: MAIN

Many excellent Perl 6 features (types, multi subs)
meet and blend into a completed whole in MAIN.

multi MAIN() {
 MAIN(LAST_MONTH.year, LAST_MONTH.month);
}

multi MAIN('current') {
 MAIN(TODAY.year, TODAY.month);
}

multi MAIN($year, $month) {
 # most of the code
}

constant
Constants look quite un-Perlish when you first

see them. No sigil? What with the long keyword!?

But they are very Perlish. They allow you to
clearly specify intent (“this is not going to

change”).

And constant isn't so long once you realize that a
BEGIN-time declaration is included in the deal.

The sigil is optional.

constant TODAY = Date.today;
constant LAST_MONTH = TODAY.earlier(:month(1));

Unexpected success: dates

The month script relies heavily on Perl 6's built-in
date library. (As does the today script.) So do

many Perl 6 scripts and programs.

We struggled to get dates and times right in Perl
6. Part of the problem is that lots of people have

opinions about it, but it's actually really, really
gnarly to get right. Like, horror-stories gnarly.

Let's look at an example.

Later
CPAN has a DateTime::Duration. It lets you

specify a span of time in components: years,
months, …, down to seconds.

The problem comes when you start to mix
components. Do you add seconds first, or years?
Does it matter? It kinda does, doesn't it? Augh!

Perl 6's solution? Forcing you to be explicit.

my $date2 = $date.later(months => 1);

We can loop over a range of dates
Just a small thing, but... ranges of dates work!

In fact, let's go back and improve the today script
in the same way:

Not bad.

sub mday($day) { Date.new: $year, $month, $day }
my $first = mday 1;
my $last = mday $first.days-in-month;

for $first .. $last {
 # ...
}

for Date.today .. Date.today.later(:7days) -> $date {
 # ...
}

mishu

Many years ago, for an old $dayjob, I wrote an
IRC bot (in Perl 5) called zarah. She was a roaring

success, and is still operational.

Ever since then, I've thought “I can do better”.
This is the first sign of Second System Syndrome.

Now, finally, mishu is taking shape.

Restarting is how you stay alive

Steve Yegge wrote a great blog post, The
Pinocchio Problem, about how great systems

never reboot.

That's a tall order. Sometimes a system goes
down, and you need to reload all the data and

get back to where you were.

So a design principle of mishu is that it runs for
very short pieces of time, catches up, and shuts

down. Most of the time it's off.

A DSL instead of language hackery

For the longest time, I wanted to implement the
restarting with continuations, and cool stuff!

But no. Bad masak! Not even Perl 6 has
continuations, that's how insane they are.

Instead, look at the problem from a different
angle, and implement something sane. In this
case, basically a small interpreter that can be

paused whenever we want.

Building small, building big

Perl 6 has this ladder of features that you start
to lean on as your program scales up and

becomes more “enterprisey”.

Packages. Classes. Roles. Grammars. Test.pm.

The experience of migrating from small to big is
something Perl 6 does surprisingly well.

Hexagonal
architecture

Speaking of testing.

There's this idea that you
can make an easy-to-test

“core” model, and then plug in all these
GUI/DB/IO things.

I feel like I'm doing that more and more. Most
things have such a core, especially after you

discover events. Not always, but really often.

Testing gets to be really nice.

Look! Tests! And they pass!

This must mean something exists!

Looking at one of the tests

The course-abstracts repository

The “course-abstracts” repository is exactly what
it says on the tin: a collection of course abstracts.

They're in a Markdown-compliant data format.

But there's also a script that makes that makes a
number of consistency checks against the data

files. Kind of a custom linter for course abstracts.

Here's how the data format looks

Just so you know what we're dealing with.

title

Rakudo Perl 6 and NQP Internals

tweet

Take a deep dive into the Rakudo Perl 6 and NQP internals.

blurb

Take a deep dive into the Rakudo Perl 6 and NQP internals. Build a small
compiler, complete with a simple class-based object system, to understand how
the toolchain works.

abstract

This intensive 2-day workshop takes a deep dive into many areas of the Rakudo
Perl 6 and NQP internals...

What we're linting for
● No Byte-Order Marks in the file, injected by

people who are either evil or use Windows.
● No missing required keys.
● No mistyped or made-up keys.
● No duplicate keys.
● No field values left empty.
● The “tweet” field shouldn't exceed 140 chars.
● ...and so on.

Many of these were installed on a “fool me
once” basis.

What the linting code looks like

It's actually an API on top of Test.pm. The
&expect_no function uses &is under the hood.

given Courses.new {
 expect_no .boms, "no files set up us the BOM";
 expect_no .missing_keys, "all courses have the required keys";
 expect_no .unrecognized_keys, "all entries have recognized keys";
 expect_no .empty_values, "all values are non-empty";
 expect_no .overlong_tweets, "all tweets are within 140 chars";
 expect_no .duplicate_keys, "there are no duplicate keys";
 expect_no .tweets_without_dot, "no tweet keys are missing final dot";

 expect_no .duplicate_codes, "there are no duplicate codes";
 expect_no .en_courses_without_sv, "all en courses have sv courses";
 expect_no .sv_courses_without_en, "all sv courses have en courses";

 expect_no .todo_entries, "there are no TODO entries";
}

Roles for great good

It took a while until I realized that I could factor
the different concerns into individual roles.

This is an example of roles-for-reuse, because
there's another class Talks which does another

combination of these roles.

class Courses
 does CheckKeys[
 required => <title tweet blurb abstract>,
 optional => <audience prerequisites agenda material length>
]
 does CheckValues
 does CheckTweets
 does CheckBom
 does CheckDuplicates {

 # much less stuff in here
}

Subs and methods?
To a Perl 5 person, it might seem weird that Perl

6 allows both subs and methods in a class.

But the distinction is very useful. Subs do what
they always did: provide convenience

functionality. Methods specify the object API.
Inner language vs outer language.

sub en_courses { ... }
sub sv_courses { ... }
sub courses { ... }

sub extract_code { ... }

method en_courses_without_sv { ... }
method sv_courses_without_en { ... }

These things but not those things

Most of us are familiar with this pattern. Hashes
are useful in the sense that they provide a

solution for this use case.

But if you go “hey wait”, you might realize that
this is not a hash problem in the first place.

method en_courses_without_sv {
 my %courses = map { $_ => 1 }, en_course_codes();
 %courses{ sv_course_codes() } :delete;
 return %courses.keys.map($_
 ~ " has an English course but not a Swedish one");
}

Sets and hypers

What we really want is set difference.

Here hypers and sets work together to allow us
to describe entire collections without for loops.

method en_courses_without_sv {
 @(en_course_codes() (-) sv_course_codes())
 >>~>> " has an English course but not a Swedish one";
}

Pipes
Pipes are nice for when you want your data flow

to run in the same direction as people read.

Watch out, though! You still can't end a line with
a closing curly (}) without also ending the

statement!

method missing_keys(@required) {
 @required ==>
 grep { %.entries{$_} :!exists } ==>
 map { $.file_and_key($_) }
}

A grammar

Almost as an afterthought, there's a grammar in
there that just parses the necessary bits of

Markdown-ish data syntax.

my grammar MarkData {
 token TOP {
 ^ <bom>? <entry>* $
 }

 token bom { \xFEFF }
 token entry { <heading> <data> \n? }

 # ...
}

psyde
Ever been to strangelyconsistent.org? The blog
posts are generated by a ~240 line Perl 6 script.

The name “psyde” is a bad pun that stuck. The
generator is based on Hakyll, a Haskell-based

static site generator. Jekyll and Hyde, Hakyll and
psyde.

Those 240 lines could be greatly generalized/de-
duplicated, but over the years this script has

done its job and hasn't needed improvement.

Overall structure

Roughly, psyde does four things:

● Generate the list of all posts
● Generate all individual articles (as needed)
● Generate the RSS feed (with last 10)
● Generate the index.html page (with last 3)

(Hakyll has a framework for doing dataflow;
psyde just hardcodes the flow.)

The one thing to call out

I think this is the nicest function I ever wrote.

sub nonexistent-or-older($target, :than(@sources)!) {
 return $target.IO !~~ :e
 || $target.IO.changed before any(@sources).IO.changed;
}

Text::Markdown

I keep coming back to Markdown as something I
need to parse. I don't know if you noticed, but...

...psyde uses it. A presentation framework I want
to write for $work could really use it. Even course-

abstracts got in on the action.

What I really want is a Markdown DOM in Perl 6.
That's the holy grail.

Data-driven TDD

Here I just want to share a very different way to
do TDD, that involves writing zero tests.

I have these 369 posts. They are test input. And I
have a p5 Markdown module that can process

them; so I have test output.

I just go through them in a sensible order and
find the first thing that blows up. When it gets

through all 369, I'll know I'm done.

CommonMark

Once the parser can handle all my posts, I want
to become compatible with CommonMark, a kind

of gold standard for Markdown.

And yes, I expect fallout from my blog posts
when doing this.

Conclusion

Perl 6 works well in production

I use it a lot in just that way.

Yay for boring features

Perl 6 has cool features. But the reason I stick
with the language, and prefer to code in it, is

that it provides a lot of sensible, safe, reliable,
and well-designed features.

That also happen to mesh really well together.

But the interesting times should come from the
problem domain, not from the language.

The future is stable

We've been living in the future for a while now.

Not everything in the future is flying cars and
cool neon and talking animals. Sometimes it's

just another day at work, snuggling up with your
favorite cozy language, Perl 6.

And I like that.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48

